If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+12x-32=0
a = 5; b = 12; c = -32;
Δ = b2-4ac
Δ = 122-4·5·(-32)
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{784}=28$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-28}{2*5}=\frac{-40}{10} =-4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+28}{2*5}=\frac{16}{10} =1+3/5 $
| 2/3x+3+4x=-4 | | 18w=23w-16 | | 10=3t2 | | 2-3/7x=40+x | | 7(y-6)-8=-4(-5y+8)-9y | | (x-36)/1.5+(x-30)/15+(x-24)/9=37.5 | | 12x=6x-3x | | (x-36)/1.5+(x-30)/15+(x-24)/9=3000000 | | 2x+19=4x-11 | | -7x+3(4x-5)=-40 | | 2x+7=x-4 | | 4(x-3)+6=6x-11 | | n²+n–5;n=4 | | 4=20/2n | | 7ײ-96x+256=0 | | 8=7+3c | | 7h=9 | | -2(y+2)+5y=0 | | 3x^2+16x=8x | | H(t)=t^2-2t.H(5) | | 7k+8=−3k−4 | | -2(-7x+7)-3x=5(x-3)-1 | | 5x=0+4x5x=4x | | -3(4x+9)=-12x-27 | | 1.2=1.2x=-3.6 | | ¼a+9=9 | | 27+x=3x+47+16+x | | V=9b+5 | | 5x4=10x+1 | | 2(x-4)^2-200=0 | | V-6d+6d=5+6d | | -13.08=n/3+-9 |