If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+13x+5=0
a = 5; b = 13; c = +5;
Δ = b2-4ac
Δ = 132-4·5·5
Δ = 69
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-\sqrt{69}}{2*5}=\frac{-13-\sqrt{69}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+\sqrt{69}}{2*5}=\frac{-13+\sqrt{69}}{10} $
| d+296=657 | | -9=x/12 | | 5r-2=6r+1 | | 6n+3=-3+8(n-6) | | 8m-(7-11m)=20 | | 10x2-31x+15=0 | | 6x=10+5 | | 15n+7n−4n+6n+–10n=16 | | 3(3+x-5)=(4)(4+x-8) | | -36/k+12=6 | | 37-4x=17 | | -8x^2-30x+18=0 | | 6x-50=6(40)-50= | | 6j-1=5j+8 | | 3x19+10+144-4x19+54+5x19-4+4x19+4=360 | | X2,+2x-195=0 | | k/7.8+47.6=16.3 | | -7/6=b/12 | | 8m-(7-11M)=50 | | 3x41=2 | | 4k=3k-6 | | 96=12q | | 6*(18−x)=54 | | 10b+20=140 | | k=8k-14 | | k/20=-2 | | -7.5k+0.29=-5.71 | | -5=-y-1 | | 13x=819 | | 48n+11n-20n+12=0 | | 7x+4+3x+16=180 | | 2(x-2)+7=13 |