If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+13x+6=0
a = 5; b = 13; c = +6;
Δ = b2-4ac
Δ = 132-4·5·6
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-7}{2*5}=\frac{-20}{10} =-2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+7}{2*5}=\frac{-6}{10} =-3/5 $
| -1=q3+-2 | | -7=d+4 | | -1=q3+ -2 | | X/5(4x+3)=3(x-2) | | 1x+23x+4=x1/2 | | -2y+44=-4(y-6) | | -49=-7k | | -12=-3+b | | 2/3x2/3+8=3x2/3-6 | | 2(w+5)=-3w+25 | | X/5(4x+3)=3(x+4) | | 18+3x=12+4x | | 7y-9=56 | | 6x-13=-x-23 | | 1x+23x+4=1/2 | | x+15+2x+35+3x-10=180 | | (x+10)9x=(14x-58) | | y+31=10 | | 8x-27=x | | 5x+4=25+2x | | x+(1/5x)=180 | | -1=2p-5=5 | | 4(x+5)=3(x-2)-2(x+2)’ | | 6-9x=7x-10-36 | | 4^2x+1=8^1x | | 2(1/2)x-1=(1/2) | | -8y+3(y-7)=24 | | 6y-6=40 | | 8a-a=14 | | -m=2.18 | | x(2)+11=36 | | 13d-9d=4 |