If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+13x=0
a = 5; b = 13; c = 0;
Δ = b2-4ac
Δ = 132-4·5·0
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-13}{2*5}=\frac{-26}{10} =-2+3/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+13}{2*5}=\frac{0}{10} =0 $
| 4(2/5x-7)=20 | | -1.5x+2=0.5 | | m^+4m-12=0 | | x=-14-(-10) | | 2/5x-3=4+9/5x | | 9+1/3x=4+4/3x | | 1/2(7x-6)=6x-10= | | |2x+10|=|5x-11| | | (5x+6÷7)-(11x+2÷21)=2.6 | | 0.6x-x=20 | | |4u+8|=4 | | 58(4w+1)/3=-7 | | 8(s-7)=-40 | | (n+5)*5=65 | | 6-2x4=-2 | | 14x+35=7x+84 | | 2x+1=5x+16 | | 4/80=n | | 3x+1=8x-19 | | 4x+1=3x=2 | | 2x+1/2x=0 | | (10-3b)+6b=22 | | 3.75x=4 | | 101/6+x+143/8=361/3-81/3 | | 6(x+2)=3(2x=4) | | (7x-44)°=225° | | 79x-2)+5=3(2x-1)+1 | | x-15=459 | | -5*n=45 | | 22k/4=11 | | 50x/5=10 | | 2y=y-17 |