If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+14x-3=0
a = 5; b = 14; c = -3;
Δ = b2-4ac
Δ = 142-4·5·(-3)
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-16}{2*5}=\frac{-30}{10} =-3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+16}{2*5}=\frac{2}{10} =1/5 $
| 5/9v=-25 | | 2x-5=x-1+3 | | -5-g/6=15 | | 3(w-4)-(5w-6)=-18 | | 2r+12-4r=26 | | 11x+9-8x-6=11x-8x+9 | | a−29=23 | | 2*(x+6)0=4*(x+2) | | n+(-8)=-4 | | -14/9=-7x | | 5x-8-3x=2 | | y/3+3=-6 | | 6x+8x=226,80 | | -12(x+6)=-3(7x-9) | | -3y+15=6(y+1) | | -15=-6x+3(x-2) | | 3x+9-8x+6=16/3 | | x-(x-1)=12-(3x+2) | | -3b^2+15=6b^2 | | 12+1.5x=18+.75 | | 10-5k+5k=-4k+2k | | -9(w+5)=2w-23 | | 7x^2+71=9x+6x^2+8 | | 31+p=1-8(p+5) | | 4x+6-x=3 | | 2z-18/5=-1.8 | | 9w+12=4(w-7) | | 8b+9=49 | | x/1.2=-3/4 | | 7x=-34x | | -6(x-5)=-3(x+1) | | 3/5+x=-3/5 |