If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+15x-4=0
a = 5; b = 15; c = -4;
Δ = b2-4ac
Δ = 152-4·5·(-4)
Δ = 305
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-\sqrt{305}}{2*5}=\frac{-15-\sqrt{305}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+\sqrt{305}}{2*5}=\frac{-15+\sqrt{305}}{10} $
| 16x+4=-24 | | 21x-3+17x+9+15x+15=180 | | 7+3t=20 | | 5/8x+4=3/8x/12 | | -5(1-5x)=195 | | 15.32+c=$29.00 | | (x+5)(x+5)=40 | | 7g+7=8g+1-g | | 4g=32g^2 | | 24x=80 | | a/15.9=-1.7924283019 | | 3(x–4)=x+2x–12 | | (92+-1.5y)-4+4y-8=180 | | 3u−–1=14.56 | | 5x+53=97 | | 5x+53=360 | | -3/2r-(-17)=29 | | 3x+3x+6x=54 | | 4r+11=r-3 | | (9x-6)°=(8x-1)° | | -150x+25x=-125 | | 3(2c+3)=15 | | 20=4*w | | 12x7-24=60 | | n+2=22 | | 19x-6x=-130 | | 12x-62=64-9x | | 4x-22=-30 | | 40x+33x=73 | | 43=3+2w | | 4k^2-144k+1152=0 | | 1.40x+33x=73 |