If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+16x-17=0
a = 5; b = 16; c = -17;
Δ = b2-4ac
Δ = 162-4·5·(-17)
Δ = 596
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{596}=\sqrt{4*149}=\sqrt{4}*\sqrt{149}=2\sqrt{149}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-2\sqrt{149}}{2*5}=\frac{-16-2\sqrt{149}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+2\sqrt{149}}{2*5}=\frac{-16+2\sqrt{149}}{10} $
| 17x2-x-6=0 | | 7x2+5x-11=0 | | 9x2+5x+18=0 | | 14x2-19x-14=0 | | 18x2-14x+16=0 | | 6x2-13x+12=0 | | 20x2-12x-13=0 | | -x+14=59 | | 104=5-x/3 | | 6x2+11x-12=0 | | 17x2+18x-18=0 | | x2+18x+20=0 | | 7x2+16x-20=0 | | 16x2+15x+5=0 | | 13x2-11x-2=0 | | 20x2+5x-6=0 | | 8x2-13x+6=0 | | 16x2+11x-11=0 | | 13x2-18x-15=0 | | 11x2+18x-17=0 | | 11x2+9x+17=0 | | 4x2-x-13=0 | | 9x2+x+13=0 | | 19x2+9x-3=0 | | 11x2+4x-10=0 | | 13x2-13x-15=0 | | 3x2+5x-4=0 | | 7x2-4x-5=0 | | 9x2+12x+1=0 | | 10x2-19x-7=0 | | 15x2+12x-8=0 | | 17x2+11x+15=0 |