If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+18x+8=0
a = 5; b = 18; c = +8;
Δ = b2-4ac
Δ = 182-4·5·8
Δ = 164
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{164}=\sqrt{4*41}=\sqrt{4}*\sqrt{41}=2\sqrt{41}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-2\sqrt{41}}{2*5}=\frac{-18-2\sqrt{41}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+2\sqrt{41}}{2*5}=\frac{-18+2\sqrt{41}}{10} $
| 4x2+11x-14=0 | | 17x2+17x-1=0 | | 10x2-19x-6=0 | | 18x2+11x-7=0 | | 16x2-15x-10=0 | | 6x2-15x-4=0 | | 19x2+7x+10=0 | | 694/12=57r9 | | 4(2x+6)=32(2x) | | 3(2x-4)-5=3 | | 6a+7a=-11 | | 8+4+6=6x7-4 | | 5x-x=9 | | (x+3/8)x2=4.7 | | +2(3y-4)=42 | | 2(x+3)+3x=5(x+1) | | -3x+4=7x-24 | | 4-2y=7y+13. | | 2x2+17x-15=0 | | 16x2-14x+3=0 | | 20x2+9x+5=0 | | 18x2-13x+13=0 | | 4x2-2x-2=0 | | 3x2+20x-4=0 | | 10x2+2x-15=0 | | 6x2-8x+6=0 | | 10x-7x=2+13 | | 11x2-18x+14=0 | | 3x2-6x+14=0 | | 16x2-13x-16=0 | | 17x2+7x-10=0 | | 17x2-18x+4=0 |