If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+20x-10=0
a = 5; b = 20; c = -10;
Δ = b2-4ac
Δ = 202-4·5·(-10)
Δ = 600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{600}=\sqrt{100*6}=\sqrt{100}*\sqrt{6}=10\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-10\sqrt{6}}{2*5}=\frac{-20-10\sqrt{6}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+10\sqrt{6}}{2*5}=\frac{-20+10\sqrt{6}}{10} $
| 6=v/4-2 | | 8^4n=48 | | 5(n-4)=-7 | | -3(5x-4=-15x-12 | | m9=0 | | 45-d=109 | | 6a+9=19.2 | | X^4+6x+8=0 | | 4(3x-5=12x-20 | | 5(2x-1)=3x+19 | | -v/3=-59 | | t-34=2 | | ×-2=2x+4 | | 2^2n=20 | | 25(16m-4)=5m+21.5 | | 8/9-4/45=x | | 180x=2(30➗3)+17-5+11+2➗1 | | F(x)=40x²-30x+520 | | y/2+9=39 | | F(x)=5x²+15x+45 | | 3q–2=16 | | 3c=1/28 | | 5p-14=8p+3 | | -3(2x-5)+4x=-15 | | 17x+6=40. | | –2(x–4)=–7(x+1) | | b/7-16=-13 | | 4x+7=103 | | t/18+13=17 | | 7x-90=120 | | -1=-(x-8 | | 16w+20=20 |