If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+29x-6=0
a = 5; b = 29; c = -6;
Δ = b2-4ac
Δ = 292-4·5·(-6)
Δ = 961
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{961}=31$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(29)-31}{2*5}=\frac{-60}{10} =-6 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(29)+31}{2*5}=\frac{2}{10} =1/5 $
| 6(+4=4c-18 | | 4-2u=4 | | 8u-4u=28 | | 22+4n=6(n+2) | | 10=w/3-16 | | -7(x-4)=49 | | 5/4=−4c+41 | | 36*6*b=180 | | 6+8(1x-1)=2(3x+4) | | 7+21b=35b+14 | | 4/9t=1/7 | | 24(0.5x^2)^2-6x=0 | | 10r–6=16+12r | | 3+3t=6 | | 6n+10=-3n-17 | | 6(c+4=5c-18 | | 12+2b=-2 | | 3-9(x)=-8(x)+25 | | 0=t^2-12t+36 | | 3j-1=8 | | Y=(x-5)(x+5) | | 4x+6x-16=48-6x | | 2x+(2)=8 | | 4x+112=144 | | 4x^2-128x+160=0 | | -(x+1)=-21 | | 2x-2=1x+3 | | 3+2g=4 | | 6d*8=14+3d | | 0.7b-2.45-5.2b=-4.4b-1.09 | | (5-y)(y-5)=-4 | | 9x+4.6=16+6x |