If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+2x=4
We move all terms to the left:
5x^2+2x-(4)=0
a = 5; b = 2; c = -4;
Δ = b2-4ac
Δ = 22-4·5·(-4)
Δ = 84
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{84}=\sqrt{4*21}=\sqrt{4}*\sqrt{21}=2\sqrt{21}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{21}}{2*5}=\frac{-2-2\sqrt{21}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{21}}{2*5}=\frac{-2+2\sqrt{21}}{10} $
| (3x+36)=180 | | 2.4x(3-2x)-0.4(2x-2)=0 | | (20-15)x=60+16-30 | | (3x+36)+54=90 | | 206+(x)=360 | | 8x-4=11x+5 | | x^2/4=1 | | -3(g+5)+8=-22 | | X+130+y=180 | | -16t^2+62.7974705t=0 | | (x+2)/5=-2 | | 9/13=2x-7 | | 5^x-4=25^x-6 | | 286+(x)=360 | | 282+(x)=360 | | 158+73+51+(x)=180 | | 3x-21=x+7 | | 97+38+88+(x)=360 | | 1=8p+9 | | 219+(x)=360 | | 11n+5=60 | | 6n-14=34+n | | 6n-14=34=n | | 11k-4k+k-6k=18 | | a/3=32 | | 53+(x)=90 | | Y=350(1+0.75y | | 83+44+(x)=180 | | 83+44(x)=180 | | 98+(x)=180 | | 16x-10=8x+10 | | 5n-3-n=19 |