If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+35x-44=0
a = 5; b = 35; c = -44;
Δ = b2-4ac
Δ = 352-4·5·(-44)
Δ = 2105
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(35)-\sqrt{2105}}{2*5}=\frac{-35-\sqrt{2105}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(35)+\sqrt{2105}}{2*5}=\frac{-35+\sqrt{2105}}{10} $
| 2x+4x-10=90 | | -3/2y= | | (X+5)(3x-1)+(x+5)(2x+1)=0 | | r+10/4=0 | | 3x-5+90+2x+15=180 | | x=12x+981 | | (7x+1)^2-19=0 | | X2+102x-7200=0 | | 19=3+x^2 | | (7x+1)^2=19 | | 2x=20−3x | | 37-(14-x)=1-(x+3) | | -(5+6c)+15=-90 | | 16-(x-8)=23 | | 12/12x=1/4 | | 11b=4b-98 | | 8(x-1)=4(x-1) | | 30-5t=5t | | (5w/7)=10 | | (5/7u)=35 | | 3. 39c-78=33c | | 9=(3/8w) | | 9=(3/8)w | | 7x-5(2x-4)=x+3 | | 12x+7=10x+3 | | (1)/(6)(y+42)-15=-3 | | -x^2-8x+33=0 | | (3x+6)(x+3)+(x+2)=0 | | k^2=4k+32 | | 4x+2/2+x-22/3=1 | | -4-2x=30 | | d2+9d+18=0 |