If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+3x-13=0
a = 5; b = 3; c = -13;
Δ = b2-4ac
Δ = 32-4·5·(-13)
Δ = 269
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{269}}{2*5}=\frac{-3-\sqrt{269}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{269}}{2*5}=\frac{-3+\sqrt{269}}{10} $
| 10x-10=5x+35 | | 5x+8=2x+36 | | 3/4=33/x | | 5x2+3x-11=0 | | 5x2+3x-12=0 | | 9-x+2=5x+3+2x | | 5x2+3x-17=0 | | x+7=2x+9.5 | | 5x2+3x-18=0 | | 23x-3=21+9 | | 1/2(10x+15)−3/2=2x+6+3x | | 5x2+3x-16=0 | | 17+5x+13x+1=180 | | 11=x^2+2x+3 | | -6x+2(x+5)=-18 | | x1(-1)=6x-2+5) | | 5x2+3x-14=0 | | 7k^2-19k-9=0 | | -7w+2(w-5)=30 | | 49.5=(3.7x)^2 | | G(3)=-4f(3)+7 | | 15-4(n-20=27 | | (14t+9)(5t−15)=0 | | -3/10+10x=1 | | 3a+6=60 | | 80-15=(x/5)*2 | | 11+3n=4n-1 | | 7h=154 | | 5x2+3x-7=0 | | 1/3y-4=1/2y-3 | | j-34=200 | | 5x2+3x-9=0 |