If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+3x-16=0
a = 5; b = 3; c = -16;
Δ = b2-4ac
Δ = 32-4·5·(-16)
Δ = 329
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{329}}{2*5}=\frac{-3-\sqrt{329}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{329}}{2*5}=\frac{-3+\sqrt{329}}{10} $
| 17+5x+13x+1=180 | | 11=x^2+2x+3 | | -6x+2(x+5)=-18 | | x1(-1)=6x-2+5) | | 5x2+3x-14=0 | | 7k^2-19k-9=0 | | -7w+2(w-5)=30 | | 49.5=(3.7x)^2 | | G(3)=-4f(3)+7 | | 15-4(n-20=27 | | (14t+9)(5t−15)=0 | | -3/10+10x=1 | | 3a+6=60 | | 80-15=(x/5)*2 | | 11+3n=4n-1 | | 7h=154 | | 5x2+3x-7=0 | | 1/3y-4=1/2y-3 | | j-34=200 | | 5x2+3x-9=0 | | 2(x-1)+4=16 | | 4x-36+4x+31=180 | | 5x2+3x-8=0 | | 10+23+x=90 | | 10x-20+3x=7x+16 | | 1/1/2+7x/10=13/20 | | 7.8h=15.6 | | 2x-42=x+24 | | 5x2+3x-5=0 | | 4.5=-1.5+x | | 5x2+3x-3=0 | | 24=2(5+q) |