If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+3x-5=0
a = 5; b = 3; c = -5;
Δ = b2-4ac
Δ = 32-4·5·(-5)
Δ = 109
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{109}}{2*5}=\frac{-3-\sqrt{109}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{109}}{2*5}=\frac{-3+\sqrt{109}}{10} $
| 4.5=-1.5+x | | 5x2+3x-3=0 | | 24=2(5+q) | | 4.5=-1.5+x | | 35+35+3x+20=180 | | 4x43=5x+20 | | 32,5=x/5 | | 34+x=95 | | 0.5(x-7)=3 | | -9+x=-8 | | 34+x=94 | | 85=x*170 | | (80-15)/2=x/5 | | 5x2+3-1=0 | | 12(x-50)=-36 | | a(1/4)=5 | | 6/4=0.8m | | W²=-9w | | x*2000=8 | | 24s=96s | | (80-15)/2=(x)*5 | | 2(x-3)=4x-14 | | 2x+15+6x-3=11x-9 | | 5x+19=6x+11=180 | | x*56=14 | | 3^5x+1=7^2x-3 | | 6(2x+1)=6+12x | | Y=3w/5-27 | | 1/5(3+4x)=43+2x | | a+13=24 | | 15x=35-5 | | -10y(y+1=0 |