If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+40x+8=0
a = 5; b = 40; c = +8;
Δ = b2-4ac
Δ = 402-4·5·8
Δ = 1440
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1440}=\sqrt{144*10}=\sqrt{144}*\sqrt{10}=12\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-12\sqrt{10}}{2*5}=\frac{-40-12\sqrt{10}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+12\sqrt{10}}{2*5}=\frac{-40+12\sqrt{10}}{10} $
| 4^(56-x)=4^(3x) | | 8=−23x. | | 9x^2-3(x^2+x)+4x-3+2x-5=12 | | 2y-19=2y-10 | | 4x-1-13x-5=4x-9x+2 | | y=-3.53(-3.45)+8.84 | | 7x-(4x-8x+3)+2x=10 | | 3x-2-8x-7=3x-5x+3 | | 3x+2x-2+2+7x+7=19 | | P=2(2x+5)+2(x | | X=4x+10+2x | | -4y+3=2 | | 5-7w=-51 | | -4x-(14x+1)=1+(9x+6) | | -4z-(14z+1)=1+(9z+6) | | 2x+29=7x-6 | | -(4z-(14z+1))=1+(9z+6) | | x+x+5=750 | | x=5/4=1-x+4/7 | | x=5/4=1-x=4/7 | | 9/3=x/15 | | 75=0.46-n | | 3x+4+2x+5+5x+1=x+13+2x | | -3x-2(-5x+4)=-8 | | 5x−1.5=3.5 | | 2+(2+6)x^2+2x+3x^2+7=18 | | 4+4n=2n | | x+2/2=3-x+5/3 | | -8(d+1)-d-9=-9(d+4)+19 | | 7n=-189 | | 4x-90=180 | | 3x+2x-2+2x+7x+7=19 |