If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+4x-6=0
a = 5; b = 4; c = -6;
Δ = b2-4ac
Δ = 42-4·5·(-6)
Δ = 136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{136}=\sqrt{4*34}=\sqrt{4}*\sqrt{34}=2\sqrt{34}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{34}}{2*5}=\frac{-4-2\sqrt{34}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{34}}{2*5}=\frac{-4+2\sqrt{34}}{10} $
| -.33333x-.25x=14 | | -3x+2=4x-3 | | 2.5(4)=5x-10 | | 5(2x-2)+3x=-10+2x | | 3x-2(-4x-1=-6 | | 18-5v=-2(2v-8) | | -3g+8=14 | | 10x=1110 | | 2x+35-23=180 | | -9z+13=-17z-19 | | 3x2+7x-6=0 | | 3(2x+5)+2x=-9 | | -4(4x-3)=-16x-12 | | 3(4x+8)=-34+22 | | 20+19d=-8+5d+16d | | c-3+ -14= -10 | | 2x+5x-6=3x+10 | | 13x-2x-8=8x-1 | | -3(x–7)+2=20-3(x-7)+2=20 | | 120=6x-4(-4x+3) | | -14.9=-2.1+u/8 | | 15x-9=7x+6-2x | | x2-14x-48=0 | | 63=9(2-d) | | 1a−4=47a−3 | | -3(x–7)+2=20 | | p8=384 | | 17x-2=7x=8 | | -5x-2(4x-28)=-61 | | x2-8x+7=0 | | n/9=5/17 | | p/32=12/8 |