If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+50x-25=0
a = 5; b = 50; c = -25;
Δ = b2-4ac
Δ = 502-4·5·(-25)
Δ = 3000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3000}=\sqrt{100*30}=\sqrt{100}*\sqrt{30}=10\sqrt{30}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(50)-10\sqrt{30}}{2*5}=\frac{-50-10\sqrt{30}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(50)+10\sqrt{30}}{2*5}=\frac{-50+10\sqrt{30}}{10} $
| 500=2.2v+v^2/20 | | 56+m1+62=180 | | 10+(x+1)-6=2(x+3)-10 | | 7=4(3+y) | | Z/3+z/5=40 | | -6x=3=2(x-2)+3 | | x2+14x+1=0 | | 44+53+m1=180 | | 3.5/6=10/x | | 37+124+m1=90 | | 37+124+m1=180 | | -6x+3=2(x-2)+3 | | 124+37+m1=90 | | 3x^2-25=275 | | 124+37+m1=180 | | -6+3=2(x-2)+3 | | 8^r=63 | | 3z-9÷-5=-2 | | O.8x+4=0.3x+3.5 | | 2(×+9)+5(x+2)=35 | | 6+(x-1)=3x-2 | | 0.8x+4=0.3×+3.5 | | -8+x+2x=-41 | | 20=4x^2+1 | | 20=4z^2+1 | | -97=-6x-3x-7 | | 50q-43=50q-81 | | -0.5x=1.7 | | 13=s+7 | | 46+m1=180 | | -6x+2=2x+98 | | 3x-x=1.16 |