If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+5x=13
We move all terms to the left:
5x^2+5x-(13)=0
a = 5; b = 5; c = -13;
Δ = b2-4ac
Δ = 52-4·5·(-13)
Δ = 285
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{285}}{2*5}=\frac{-5-\sqrt{285}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{285}}{2*5}=\frac{-5+\sqrt{285}}{10} $
| 5m^2-4m+4=16 | | 8k-10=15 | | 1.08^x=500 | | X+2÷3=x-5÷5 | | 120/4x=2x | | −y=10y′ | | 3x+9=6x−99 | | 3z+9=6z−99 | | 0.46666667*x=100 | | (-x+2x)÷-1=0 | | 2−(3x−2−4x)=6−4x | | (2^3+x)=4^2x | | 7(6x-14)=280 | | 3(6x-31)=195 | | 7m-(2+m)=5-(m-4) | | 10=160-(0.02x) | | 13-3×4+2=x | | 3x=-5x+80 | | (2x-1)(x+1)-(x-3)(x+5)=20 | | {5}/{6}t=-{3}/{4} | | 5(6x-22)=310 | | 3(2x+33)=-21 | | 49=7^(2x-1) | | 5x+3x-9-6=4x-17+3x | | 9.6=44x | | X+2=x~5 | | 9b+3=39 | | 4p+2=26 | | (14x+2x)×2=378 | | 400+49x=750 | | 5(2x+1)+3/9=2 | | 5(3x-21)=105 |