If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+7x-12=0
a = 5; b = 7; c = -12;
Δ = b2-4ac
Δ = 72-4·5·(-12)
Δ = 289
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{289}=17$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-17}{2*5}=\frac{-24}{10} =-2+2/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+17}{2*5}=\frac{10}{10} =1 $
| 3=-0.5(6n+6) | | 19+9r=1 | | 6x-3.2=-31.4 | | 17+45+2x=180 | | 9v-42=170-v | | 7x-2=47* | | 81=f-(-9) | | h^2-18h-19=0 | | 92+7x-2=21x+6 | | -3+5t=6t | | 4*x/5=-16 | | 9x-40=23 | | 4(2x-4)=-6 | | 30+10x+20=90 | | 50+5x+x=180 | | x+391/4=180 | | 17m–9=5 | | x+x+x+32=156-34 | | 9g-3g-1=17 | | 2(7x+4)-10=-44 | | 4g-5=-g | | c/28=3 | | -7-4=4y*(8-6)-64 | | 24=1/3c | | 7-4=4y*(8-6)-64 | | 10x+18=64x | | 7(2l+10)=196 | | -1/3(f+8)=13 | | 3(1+15n)−17n=−361 | | 12x-5=8-25 | | 5u=3+8u | | 4(3x-1)+5=61 |