If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+7x-6=0
a = 5; b = 7; c = -6;
Δ = b2-4ac
Δ = 72-4·5·(-6)
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-13}{2*5}=\frac{-20}{10} =-2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+13}{2*5}=\frac{6}{10} =3/5 $
| 3x+16=4x+14 | | 85x+7=–32 | | b2-12b+36=0 | | g3=9 | | 9.68x+21.6-6.23=2.3x+17 | | -8v+5(v+4)=5 | | 5(x-8)=x+8 | | 2=-5m+37 | | 2x-4(x-3)=-9+4x+3 | | 0=x2-5x+1 | | 3+n/8=-4 | | (4x+7)°=5(x-4)° | | x-3(x+10)=-10 | | x2+12x+36=14 | | 2x2+6x=-4 | | 5t^2+7t-60=0 | | x-4(x+12)=-6 | | 6-6r-5=-23 | | 3x+14=x-9 | | 9x^2–14x+5=0 | | 3x-1-4=-1 | | 4(x+6)-2(x+2)=-6 | | (23x+1)=52 | | 1-3p-5=-10 | | n/3=0.9 | | 7(x-11)=21 | | 3m+1=2m+4=180 | | 9t^2–14t+5=0 | | A=3(1+4x)+11+2x | | 3x-4-x=-2 | | 3x-4+8x+3=33 | | 9t2–14t+5=0 |