5x2+8-4/2=12

Simple and best practice solution for 5x2+8-4/2=12 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5x2+8-4/2=12 equation:



5x^2+8-4/2=12
We move all terms to the left:
5x^2+8-4/2-(12)=0
determiningTheFunctionDomain 5x^2+8-12-4/2=0
We add all the numbers together, and all the variables
5x^2-6=0
a = 5; b = 0; c = -6;
Δ = b2-4ac
Δ = 02-4·5·(-6)
Δ = 120
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{120}=\sqrt{4*30}=\sqrt{4}*\sqrt{30}=2\sqrt{30}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{30}}{2*5}=\frac{0-2\sqrt{30}}{10} =-\frac{2\sqrt{30}}{10} =-\frac{\sqrt{30}}{5} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{30}}{2*5}=\frac{0+2\sqrt{30}}{10} =\frac{2\sqrt{30}}{10} =\frac{\sqrt{30}}{5} $

See similar equations:

| 6(q-7)-3(4-q)=9 | | 2.5x^2-2.5x-4.375=5 | | x+14=3/5x | | 2-(3×t)=78 | | 2/3(x-2)=8 | | 2-4(3x-6)=-6 | | 3x−24=−6 | | 112=8(6+2n) | | 2−2x=3/4x+13 | | 3+3g=16 | | -5p^2+2p+88=0 | | (18+21+17+x)/4=20 | | 20w=20 | | 35=7a | | 2-t+3t=78 | | 12x^2+44x=100 | | 3(-2-4)=12-6x | | 3.3x−24=−6 | | (4x+5)+(5x40)=180 | | -k^2+5k-4=0 | | I/7=a/4 | | (4/9)=(2/x) | | 191=-1.83a+212 | | 5/2-7x=40+x | | 9x-8x=8x-8x-576 | | 3x-3+7x=3(6x-3)+4 | | 9+6x=7x | | -x+50=-x+66 | | 27x+3x=120 | | 2.5x+15=0 | | -6=-2x+8x | | x/2+5=3/4 |

Equations solver categories