If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+8x+3=0
a = 5; b = 8; c = +3;
Δ = b2-4ac
Δ = 82-4·5·3
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2}{2*5}=\frac{-10}{10} =-1 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2}{2*5}=\frac{-6}{10} =-3/5 $
| w−5=37 | | g7=9 | | 16u-4u=4 | | 13z+6=-5z^2 | | 13z+6=5z^2 | | 4q-7=31 | | 3/4(3a-6)+1/2=2/5(3a+20) | | 2(1+7x)=72. | | 8(5-6x=) | | 5x+2-x-10=0 | | 7-x=4-2x | | 2x-2/3=3/4x | | Q=32-0.5p | | y=-2129.75(9)+21028.35 | | 9.4=-2129.75x+21028.35 | | y=-2129.75(9.4)+21028.35 | | q=2000–2.5P | | -4x+7=9x-5 | | 0=-x(x-9)+52 | | 0=2x^2-6x+9 | | (2x)+(3x)+(5x)=24 | | 20x-46=106 | | ((5x-23)+(7x-1)=180 | | -1/2=1/3w-4/7 | | -10+x+4=7x-3 | | 180=x/67 | | y=3600-(.8y) | | 22/3x-6=8 | | 5(8x7)-7=8 | | -7/4-7/2u=-7/8 | | (14x-2)(3x+2)=3x | | 7x-4x=180 |