If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+9x=0
a = 5; b = 9; c = 0;
Δ = b2-4ac
Δ = 92-4·5·0
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-9}{2*5}=\frac{-18}{10} =-1+4/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+9}{2*5}=\frac{0}{10} =0 $
| (X+1)(x+2)(x+3)(x+4)=720 | | 6-7x=7x-10-22 | | 7/5y-12=-5 | | x/23=71 | | 4=0.75m-7 | | 7p=4p−6 | | -129+x=33-8x | | 5x+3(x+5)=-2(3x-4)-7 | | 3(z+3)=32 | | 30(x)=50.00-0.10x | | −3n−5=25 | | 6(2n+5)=55 | | f/3+2=12 | | 6x-(24x^-2)=0 | | 2.7x-4=1.5+2 | | -5(4x-2)+1=-151 | | x/8=25/48 | | 6x-24x^-2=0 | | 36-4=4x | | -3x+5=-4-10 | | -4h-9+2h=25 | | 24x^2+30x-18=0 | | 3+{x}{-2}=10 | | 9(1+e)=45 | | 7(9n+2)=22 | | 3n=8-175 | | 10−6t=7t−3 | | 89+57=(5x-6) | | -31=5(4s-9) | | -8f=-7f−9 | | 11x+160=-9-2x | | 1+3i/6+3i=0 |