If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+x=35
We move all terms to the left:
5x^2+x-(35)=0
a = 5; b = 1; c = -35;
Δ = b2-4ac
Δ = 12-4·5·(-35)
Δ = 701
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{701}}{2*5}=\frac{-1-\sqrt{701}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{701}}{2*5}=\frac{-1+\sqrt{701}}{10} $
| 5x2+2X=35 | | -7v=-9v+8 | | B=(6/13)y | | 6n-(5n-1)=4 | | 11-3b/5=1/3b | | 2x+2x=2=4x=2 | | (x-4/10)=(3/5)(-x-5/15) | | (13x+3)=(3x+21) | | B=(6÷13)y | | -7+7j=6j | | x2+1X=35 | | 4(2r-1)=–2(3r+16) | | x–1.4=-6.3 | | -10-4s=-6s+10 | | (42-6)*10=x | | 120+0.30x=60+0.60x | | 42-6=10+10x | | 8=(3/4a+12-a+4 | | x2-1X=35 | | 8v=7v-4 | | 50v+5=2 | | 9x-8.X=4 | | z=51 | | x+2(8.95)=23.65 | | x2-X=35 | | 5h=4h+4 | | -9.4=x/5+3.1 | | 4(3a-1)=16 | | 50+2v=200+5v | | 3/4x-2/5=13/10 | | -4-x=-16 | | 4.5*3.8=x |