If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+x-6=0
a = 5; b = 1; c = -6;
Δ = b2-4ac
Δ = 12-4·5·(-6)
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-11}{2*5}=\frac{-12}{10} =-1+1/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+11}{2*5}=\frac{10}{10} =1 $
| 4(2x-2)=6(6x+2) | | 7x2-42=0 | | (3f+2)(4f–1)=0 | | 5m2-11m-12=0 | | 4x2–8x–5=0 | | 3x2–12x+12=0 | | 4x-79=-5x+137 | | 2+(2x−3)=3−2x | | 3(2y+1)=(y+2) | | x^2+8x-9=-16 | | 2a-3=4a-5 | | 200-x=x-100 | | 4(b+3)=2(b+4 | | (2x2+2x-12)/(x-2)=0 | | 3x-3=10x-21 | | -143-9x=x+57 | | 5x^2+24x+144=0 | | X+17x=162 | | 14x-18=3(2x+9) | | 6(3x+6)=4(5-2) | | 4(7x/2+2)=-20 | | (10b-5)-3(3b+3)=-2 | | 6(8h-3)=-24 | | x/3-4/x=2 | | 3x+2(-x+3=17 | | A=(8x+5)(10x-4) | | 5/6(t)+4=2-1/6(t) | | 2n+17=19 | | 13x/12=x+4 | | 10-3p=21-5p | | 5/6t+4=2*1/6t | | 8x+5=12x+50 |