If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-10x+1=0
a = 5; b = -10; c = +1;
Δ = b2-4ac
Δ = -102-4·5·1
Δ = 80
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{80}=\sqrt{16*5}=\sqrt{16}*\sqrt{5}=4\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-4\sqrt{5}}{2*5}=\frac{10-4\sqrt{5}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+4\sqrt{5}}{2*5}=\frac{10+4\sqrt{5}}{10} $
| 105=w+63 | | 2x^2-12x=19=73 | | -13x=−14x-10 | | 3x33x x =4.5=34.5 =1.5 | | C=165-8x+x^2 | | v4+ 8=11 | | 3x+2x=7x-10 | | 105=w=63 | | -4(-2x+8)=-6(x-10)+12x | | 4(2x+1)=6x-12 | | 105=w+6 | | 3x-7=-2+9 | | X-3x+20=4x+6x+9 | | 90=5(z+9) | | -14+6b-2b=1+5b | | 64=h+38 | | (-5)4^6x+5=-30 | | 2/3-3/2x+4=0 | | 2(4w+3)=6(w+5) | | 5x+32=2x+5 | | 8–2x=x+5 | | k+16=59 | | 9x-6(x+3)=12 | | (4x-9)=(3x+29 | | 2x×x=50 | | 9xx=0 | | 3x=4=2(3x+5) | | 16+10y=6 | | 180=3x+55 | | (8)11^3p+10=194 | | 19x+5=75 | | 3x+21-x=20+2x |