If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-10x-840=0
a = 5; b = -10; c = -840;
Δ = b2-4ac
Δ = -102-4·5·(-840)
Δ = 16900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16900}=130$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-130}{2*5}=\frac{-120}{10} =-12 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+130}{2*5}=\frac{140}{10} =14 $
| 2(x-3)^2+10=82 | | 7n^2+8n=-5 | | 4x−8=124x−8+8=12+84x=2044x=204x= | | 7d+8d=-28 | | 6÷x=2 | | X/5-2x/15=x+4/3 | | 3(2x-3)=66 | | 2p^2-10=6 | | 20x^2(x+9)=0 | | x^2+6x-24=x | | (x-12)=50 | | 1/8x+1/6x=14 | | -3x^2-60=-87 | | 3(7x-9)=-9x-8+15+13x | | -1.6=-0.8u+0.6u | | 2(x=+4)+9x | | 2x^2+15=10 | | -2(x+1)=3x-2+2(5x+5) | | 9x-6x-3=12 | | 61=2x+51 | | A=60-0.2d | | (3x+8)+(60-x)+(4x-38)=180 | | 2a+2a-3a=11 | | 61+2x+15=180 | | (13000+x)/3=25000 | | 3a+7)(2a+5)= | | 5=4b−7 | | 5х-(3х-1)=x-4 | | 18c+2c-15=5 | | 9/4t=8/9 | | b4− 1= 2 | | 7n-4n-n=18 |