If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-10x=0
a = 5; b = -10; c = 0;
Δ = b2-4ac
Δ = -102-4·5·0
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-10}{2*5}=\frac{0}{10} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+10}{2*5}=\frac{20}{10} =2 $
| 5x-8+1=-4x-7+7x | | 10=6=2u | | 162-12y/24+4y=43 | | 4x2-4x=0 | | (5y)+110=180 | | 0.9-0.4z=5.7 | | 2(7y−1)=40 | | 1=2j=9 | | 2(-5+4p)=-2(5+3p) | | 1/4c+3/4=-1/2 | | 18x2-29x+3=0 | | 5x-8=X+3 | | 7x*(-3)=252 | | (3x-55)=(2x) | | 9x-3=3x-10,5 | | 4+4(3x-6)=5(2x+1) | | 4x-11=6x+12 | | 4-3x=x+4 | | x2-7x+19=0 | | 50-1/5x=4 | | 4x2-8x+3=0 | | x/9+4=8 | | 53=8x+1 | | -4(2x+4)+3x+2=−44 | | 8(5+7p)=-2p-5(p-8) | | 4(-x+5)+2x+2=4 | | 2x-7x+53=2x+39 | | 13x+7=-46 | | 12x2-7x-10=0 | | x/8-4=2 | | 8x(x-3)=10 | | 4x-7+2x=2(3x+-3)-1 |