If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-12x+4=0
a = 5; b = -12; c = +4;
Δ = b2-4ac
Δ = -122-4·5·4
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-8}{2*5}=\frac{4}{10} =2/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+8}{2*5}=\frac{20}{10} =2 $
| 13x+5(x-7)^2=-85 | | (4,8)x=6 | | 4/5x+26/5x+6=0 | | 4/5x+26/5x+16=0 | | 4n+12=10n-30 | | -6x+5-6x=-31 | | -6x+5-6x=-31 | | -6x+5-6x=-31 | | 7x+34=8 | | 37=4y-15 | | 37=4y-15 | | 37=4y-15 | | 37=4y-15 | | 3x2-4x/2x+9=5 | | 6(4x-5=42 | | 3x+x/2=7 | | (1/2)x=x/2 | | 6/11=33/x | | 6/11=33/x | | Y^4+2y+y=0 | | 7^x+4=10^x | | 7^x+4=10^x | | 18-7*m+1=-9 | | 7y−1=5y+13 | | 18-7*m+1=-9 | | 18-7*m+1=-9 | | 7y−1=5y+13 | | 7y−1=5y+13 | | 7y−1=5y+13 | | (6x-8)^2=64 | | (6x-8)^2=64 | | 2x-11x=2 |