If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-13=13
We move all terms to the left:
5x^2-13-(13)=0
We add all the numbers together, and all the variables
5x^2-26=0
a = 5; b = 0; c = -26;
Δ = b2-4ac
Δ = 02-4·5·(-26)
Δ = 520
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{520}=\sqrt{4*130}=\sqrt{4}*\sqrt{130}=2\sqrt{130}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{130}}{2*5}=\frac{0-2\sqrt{130}}{10} =-\frac{2\sqrt{130}}{10} =-\frac{\sqrt{130}}{5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{130}}{2*5}=\frac{0+2\sqrt{130}}{10} =\frac{2\sqrt{130}}{10} =\frac{\sqrt{130}}{5} $
| .8+5x=−2 | | 0=12x^2-64x+153 | | 25=c-17 | | 15x+2x+5+90=180 | | V=1/3r | | 2x-14=1+3x | | 5(x-3)=3(2x+5) | | 45+2x=47 | | z/5-6=3.25 | | -3(2b-5)=13-6b | | 5x-5+4x+6+80=180 | | 4x−6=57-3x | | 5x+1344x=6 | | (1/5x)+(2/10x)=(4/5) | | X²+10X+m=0 | | -4(w+5)+7=-33 | | -2x3-x7=17 | | 4-x+1=120 | | -6+1/3x-7-1/6x=-13+1/6x | | -76=10x-6 | | 33/8x=27 | | 5v+7=4v+3 | | 14+3x=5x+23 | | 2=-4x+2(x+5 | | 29+33-5-x-(-9)=11 | | 40=-10(x-16) | | -2x/3*x/7=17 | | X=21,y=7 | | 11x+1+21x+1=130 | | 6r*5=60 | | 6x+1+4x-11+90=180 | | 5623*x+x=210355 |