If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-15x-10=0
a = 5; b = -15; c = -10;
Δ = b2-4ac
Δ = -152-4·5·(-10)
Δ = 425
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{425}=\sqrt{25*17}=\sqrt{25}*\sqrt{17}=5\sqrt{17}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-5\sqrt{17}}{2*5}=\frac{15-5\sqrt{17}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+5\sqrt{17}}{2*5}=\frac{15+5\sqrt{17}}{10} $
| 8^X+1=2^x-5 | | x/8-36=15 | | -2x+4=-6(8x+7) | | 10^x+1-10^x=9000 | | 18-7m=-4m-3(2+5m) | | 2(2n=3) | | 2x+130=360 | | 4(1-8x)=-92 | | 3=1.27x^2/3 | | -272=-8(6n-8) | | 7(4-5a)-2=-254 | | 16v+2=18 | | 2y+3y=-7 | | 3(4x+2)=126 | | -2.1k+3.6=7.8 | | 7(7+4x)=105 | | -4(x+9)=-6 | | 8x+53+27+2x=180 | | 16y+16y´+3y=0 | | 3(9+7x)=111 | | 9a+6=34.8 | | 10=5(2w+4)+3 | | 2x+3x=-7 | | 20+5c=5(c+4) | | 4(2x+4)=88 | | 10=7(9+8d) | | 5x+7=-68-10 | | -5=-8t+6+8t | | 5432m-645m=849 | | 5x-2+x=9x+3 | | 5x—7=0 | | 6(7x+10)=522 |