If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-15x-50=0
a = 5; b = -15; c = -50;
Δ = b2-4ac
Δ = -152-4·5·(-50)
Δ = 1225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1225}=35$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-35}{2*5}=\frac{-20}{10} =-2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+35}{2*5}=\frac{50}{10} =5 $
| 5-8x=-3x+5 | | 2+y/3=8 | | 5-8x=3x+5 | | 2x+12x=3x=3x-5x | | 8c+5=85 | | 9-6(3h+11)=7(h+7)-11 | | 4(t-71)=44 | | h/10+96=86 | | 4x-1=-3x-1 | | 2.7x-1.3=8 | | d-22/9=5 | | 16(z-4)=6(5-9z) | | 15+9k=42 | | 5x-13=44 | | 10d-23=27 | | -4x+260=0 | | 56=7(d-84) | | 4(6n+9=6(4n+9) | | (y-3.2)/3^3=2.4 | | 1/2-x+1/2x=2.1/2 | | 5(3x+2)=8(2x-4) | | 1/2-x+1/2x=21/2 | | 7(2x-1)-3/5x=6/5(4-3x) | | 6c^2-8+3=0 | | (s-6)+2=9(s-4)-(8s-1) | | 7=r | | 2/4x+5=10 | | 6-10j+6(5j+5)=-4(j-9) | | (5/4)b+7=(7/8b+19 | | .25(x-12)-6=-4 | | 5w+41=7(w+3) | | -5(3w+4)-3(5w+10)=11w+11-w-1 |