If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-15x=0
a = 5; b = -15; c = 0;
Δ = b2-4ac
Δ = -152-4·5·0
Δ = 225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{225}=15$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-15}{2*5}=\frac{0}{10} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+15}{2*5}=\frac{30}{10} =3 $
| 3=f3-1f-2 | | 5y(86-y)=86+4y | | -3x+75=35-2x | | -3(2x-4)+3x=4(7-x) | | -3x+5=35-2x | | 16x^2+60x-54=0 | | 1/2x-5=1/5x+4 | | 4y=6y+0 | | 4-2y=7+3y | | -5/4=-7/5x | | 4+1/2x=6 | | 8x^2+56x+96=0 | | 5a+4=-2a | | 5-3y=7+4y | | 5x=11=4+2x | | -11.2=v/7+6.3 | | 0.8b-2.57=-0.2b+2.9 | | u/3-2.2=-9.7 | | 2y-6=46 | | 2x-4x+8=-2(x-4) | | 60/22=y5 | | 60/22=x | | x(x-4)^2=0 | | 60+5x=135-15x | | (2,1m=2 | | (3,5)m=-1 | | -8-n=84 | | 15^2x-12x=0 | | 1.3x-2.7=0.3x-3.4 | | 8b-13=8b+2 | | 60+5x=135-5x-10 | | 6(x-3)=2(3x-9) |