If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-19x+12=0
a = 5; b = -19; c = +12;
Δ = b2-4ac
Δ = -192-4·5·12
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-11}{2*5}=\frac{8}{10} =4/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+11}{2*5}=\frac{30}{10} =3 $
| g/2+11=15 | | -3(x-2)=14 | | g/2+11=155 | | 2x/5-3=4 | | 2x/5=3/5=4/5 | | -7/x=-10/3x+7 | | -4x+5=-5x+-4 | | 7+10c=-53 | | s+s=16 | | 10^(1−x)=7^x | | -10-4p=29 | | 4x+5=5x+-4 | | 32.95=7g+3.76 | | 5/7x=1/6 | | 2x+32+.5x+65=180 | | 5+2x-11=1/2(20x+6) | | -2(w-2)-4=8(w-3)+15 | | 101−x=7x | | 27.06=5g+3.61 | | (4x+8)(3x-3)=12x(12x)+x(x) | | 6(x-4)-5x=7 | | 0.2x32.666666666667+0.1x32.666666666666667=9.8 | | 3-p=-5 | | f/6=2.5 | | 4y+5=85 | | 40n-9n=0 | | (x+3)(4x-8)=180 | | 12+12=h | | -8w+3(w+3)=14 | | 7x-35=30 | | -7(x+8)=7x+14 | | (2x-8)(7x2+x+12)=0 |