If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-20x+15=0
a = 5; b = -20; c = +15;
Δ = b2-4ac
Δ = -202-4·5·15
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-10}{2*5}=\frac{10}{10} =1 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+10}{2*5}=\frac{30}{10} =3 $
| ((1/4)×^2)-(3/2)x+2=0 | | -2(2x+3)=-4(x+11)-2 | | 9x+10=5×-2 | | 2x-2=3(x-1$ | | 5x2+60+180=0 | | u2+7u-8=0 | | 2x2-24x+54=0 | | 52(3x+2)=90 | | x3=200000 | | 5x2+45x+90=0 | | -4.5=m=1.9 | | 14=-5x(4x+3)+21x | | 6-11+5=(-8c)+9c | | 4x-44=-4(x-7) | | 4/z=5/12 | | 3x²+18x+27=0 | | 3y+27=180 | | 2.4=-(t/4.5) | | 2x2-12+18=0 | | -7.2(x-1.25)=14.4 | | 4x2+4x-168=0 | | -7.2(x-1.25=14.4 | | 0.5d-3+5=0 | | Y^4-64y^2+576=0 | | 7x2+6x-3=0 | | (2-3u)(2-u)=0 | | t269.50=1.4 | | s-17=7(s-15) | | 48=p+(-63) | | (7x+4)/3=(9x-6)/4 | | 4+3x=4x+11 | | 6x^+11x+3=0 |