If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-20x+3=0
a = 5; b = -20; c = +3;
Δ = b2-4ac
Δ = -202-4·5·3
Δ = 340
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{340}=\sqrt{4*85}=\sqrt{4}*\sqrt{85}=2\sqrt{85}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-2\sqrt{85}}{2*5}=\frac{20-2\sqrt{85}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+2\sqrt{85}}{2*5}=\frac{20+2\sqrt{85}}{10} $
| 2x–7=5x+2. | | 4p-6=4p=2 | | 12d-3=12d-9 | | (x^2-3x-10)(x^2-5x-6)=145 | | 20+2d=-20+2d | | 12d-3=6d-3 | | 10y-3(8-5y)=-74 | | 6(7-y)+y=46-y | | -5(y+2)-3y=-50 | | 9(x+4)=-5x-20 | | 4(8-5y)=+2y=-40 | | 4(8-5y)2y=-40 | | 6(2x−3)=-6 | | 6(2x−3)=−6 | | 5x-20=3x+100 | | 5x-30=3x+100 | | 6=2(w+7)-6w | | 4x+2x=3x-9 | | 4(7y-5)=6(4y-2) | | 16x^3+156x^2-972=0 | | 3(2y+5)=5(y+1) | | 3x-25=7+2x | | 16a^3+156a^2-972=0 | | (x+2)/(9x-2)=1 | | X/2-1/4-x/3=1/2 | | X^-35x-9200=0 | | -2(x-7)=-x+6 | | 4x-15=125-x | | 80x-20=2x+70 | | 5x-28=23+2x | | x^2+99x+127=0 | | -5(x+4)=2x-12 |