If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-20x-25=0
a = 5; b = -20; c = -25;
Δ = b2-4ac
Δ = -202-4·5·(-25)
Δ = 900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{900}=30$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-30}{2*5}=\frac{-10}{10} =-1 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+30}{2*5}=\frac{50}{10} =5 $
| -4(-5x+8)-4x=2(x-5)-6 | | 81^x=27^x+2. | | 6x-5+3(2x-1)=0 | | x+34+5⋅(7x+9)3=3⋅(4x+3)12−72 | | -3y+34=7(y+2) | | 2(w+7)-5w=38 | | 2(w+7)-5w=36 | | h/3−2=2 | | -22=-7x+2(x-6) | | 4x+5=3x+10= | | 2x+8=x-13 | | 4x*8=5 | | x+2x+3x=54 | | z2+2z=17 | | 5j+9=3j−3 | | 35=3y-13 | | 6x+16=12x-20 | | (1+r/100)^10=4.146 | | -3(x+2)=-44 | | x=7/8+√36-7/8-(-3) | | Y=4+2x+6 | | 0.3(10x+19)=4.5(0.2x+5) | | 16m2+16m=0 | | 7+8w=9w+1 | | 29.2=26.2-n | | 5u=24+2u | | -2(m+7)=32 | | p=6(13) | | 2x+15=3x-17 | | F(x)=3x^2-x+3 | | 5+5p=7p+1 | | -5+x=3-9(x+2 |