If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-24x-5=0
a = 5; b = -24; c = -5;
Δ = b2-4ac
Δ = -242-4·5·(-5)
Δ = 676
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{676}=26$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-26}{2*5}=\frac{-2}{10} =-1/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+26}{2*5}=\frac{50}{10} =5 $
| -9u-24=-6(u+2) | | 6b-6b=-12 | | 1g+4=12 | | -9(w+4)=5w+34 | | 5/2x-2/3x=4/3 | | 4h−13=−9h | | 4=a/3=2 | | x+(1/2*x+3)=180 | | 26x+5+7x+10=180 | | 5n2+7n+2=0 | | 8-4=3+2x | | 2b+52=30 | | -4(X-2)+3x=2(X+5)-4x-5x | | 1/3(7x-5)=10 | | -1/4x-2/4+5=-x | | 2t-3t-7=7t+5 | | 7x+5=8x+10x | | (x)=2x2-4x | | 3(5a+8)=18a | | 30x-68=11(2x-3)+3x | | 7x+5=8x+10x+x | | 5x-3(4x-9)=-11 | | 16=y/2+11 | | -13-1/4x=7 | | n^2-16^n+64=0 | | 2x(x-1)=7x2-3x | | 7.50+1.00x=15 | | 4x-28=18x | | z+3/5-1/4=3/5 | | -64=15x-4 | | 25+5x=80 | | 32=25x+8 |