If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-2x-39=0
a = 5; b = -2; c = -39;
Δ = b2-4ac
Δ = -22-4·5·(-39)
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{784}=28$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-28}{2*5}=\frac{-26}{10} =-2+3/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+28}{2*5}=\frac{30}{10} =3 $
| 6x-7=8x+3 | | 6(2x+3)=9(1x-2) | | -r=-7–2r | | -2x+3+8x=-33 | | 8=-2(-10+k) | | 5x+55=8x-5 | | -2x^2+30=70 | | 0.25/3=x/1.5 | | 2m+3m=-15 | | -2y-12=52 | | 3x+4=6x19 | | 8=s+15 | | 3x^2-10=14 | | 6.2-1.4y=4.7y+25.11 | | -8.7=-2.3+v4 | | 4x+1+2x=7 | | (w-4)^2=0 | | 1/2x+4=-7 | | 3(3-y)=1=31 | | 1/2+3n=3/4 | | n+11.3=-4.4 | | 10(a+3)-4(a-2)=7(a+5) | | 29=x/7+6 | | 9(u-5)=7u-39 | | 4x+6=-6x+2 | | 0=32−50x2 | | x^2-4x+22=7x-2 | | 30=-6x+3(x+4 | | x-7.6=-5.3 | | 8x+4*2x+3=92 | | 8n–4=3n-4 | | 4x-x+7=x+3+4 |