If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-2x=0
a = 5; b = -2; c = 0;
Δ = b2-4ac
Δ = -22-4·5·0
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2}{2*5}=\frac{0}{10} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2}{2*5}=\frac{4}{10} =2/5 $
| 23x=26 | | 9c-10=4(2+7) | | F(x)=4x^2-10x | | -9=y/4+3 | | 8.4=y+4.6 | | 5.2q-3.7-5.5q=-1.3q-5.2 | | 6(c-5)+5=4+c-29 | | 5x-2(x+3)=7+3(x-4) | | 7x-33x=32 | | 3/2x+4-3/4x=12 | | 3/5p(1+5/3)=31/2 | | 16x=40+8x | | 2x-4(x+3)=2x+12 | | 0.2t=0.7+0.1t | | d+1/2=1 | | 2x2=12x | | 10+(9I)-(6+i)=0 | | 2x-4x+12=2x+12 | | 52=-5x= | | 3(2x-4)=-2(-3x-6) | | -b=36 | | -x-4=3-2x | | 25=5(x+2)+8 | | 2x+16+5x=-8 | | 3a^2+12a-15=0 | | x^-4+8x^-2+15=0 | | -7-2x=x+11 | | p-4=36 | | -2x1=x+7 | | 5(x-1)=4x+x | | -9+x=5+3x | | (X-5)^2-3(x-5)+2=0 |