If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-30=0
a = 5; b = 0; c = -30;
Δ = b2-4ac
Δ = 02-4·5·(-30)
Δ = 600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{600}=\sqrt{100*6}=\sqrt{100}*\sqrt{6}=10\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{6}}{2*5}=\frac{0-10\sqrt{6}}{10} =-\frac{10\sqrt{6}}{10} =-\sqrt{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{6}}{2*5}=\frac{0+10\sqrt{6}}{10} =\frac{10\sqrt{6}}{10} =\sqrt{6} $
| |x+1+6=26 | | 97=c+6 | | -9x+6x-13=2 | | 3(4x-9)=5(2x-5)= | | 2a+24=175 | | -110=2-2(8-8n) | | -2j=2 | | 12x+25=5x+235 | | -6y+46=8(y-3) | | -8=32–5q | | 3d-12=3 | | -6h=-18 | | 4x-15=8x+3 | | (-⅙)x=8 | | 6x-2-1=6x-3 | | (x^2-4x-2)(-2x^2+3x+4)=0 | | 5x=2x-42-3x= | | 2z+4-7z=9 | | 27=j+12 | | 5h=0 | | 2x-10=3x-x+2 | | 32-7x=-6(x-3) | | 2x+2=2x-4+6 | | -10f=-100 | | 33=-3(m+5)+m | | 5x-13=4x+13 | | -64=-4(-5n)+3 | | 4x+17=–15 | | 5x-13=4x+14 | | 17–y=12 | | 2(x-3=-24 | | p+5=5+2p-p |