If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-31x-72=0
a = 5; b = -31; c = -72;
Δ = b2-4ac
Δ = -312-4·5·(-72)
Δ = 2401
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2401}=49$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-31)-49}{2*5}=\frac{-18}{10} =-1+4/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-31)+49}{2*5}=\frac{80}{10} =8 $
| 0.5(x-5)=1 | | 71-6(2x+4)=21(4x+30)+15 | | 4(2w+3)+8=43 | | 280/0.75=x | | F-6=3f-1 | | 603292=x+(x*0.1) | | 100^(4x+5)=1000 | | 67-3x=-10x-18 | | 48+7x=20 | | Y-10=2y-7 | | x-15/100=11 | | 25(x^2+1)-12=14 | | 3a+7=4a=1 | | 3y^2+40y+100=0 | | -6.5x+3=19-2.5x | | 67-3x=-10x+18 | | 5x(x-3)-10=0 | | (x-2)(x=6)=180 | | 4(p-7)=3p-32 | | 16+19x+15=71-x | | 180=6x-9+7x+7 | | 118-x=4+5x | | 8(p-6)=7p-51 | | Y=-18x+15 | | Y=21x+11 | | 7+16=142+x | | 180=25x+20x | | -5p-2.9=-6p-3.2 | | 4b-4+18+28+3b=70 | | I2x-5I=99 | | 8p+83/9=3 | | 180=2x+13+x+40 |