If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-35=0
a = 5; b = 0; c = -35;
Δ = b2-4ac
Δ = 02-4·5·(-35)
Δ = 700
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{700}=\sqrt{100*7}=\sqrt{100}*\sqrt{7}=10\sqrt{7}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{7}}{2*5}=\frac{0-10\sqrt{7}}{10} =-\frac{10\sqrt{7}}{10} =-\sqrt{7} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{7}}{2*5}=\frac{0+10\sqrt{7}}{10} =\frac{10\sqrt{7}}{10} =\sqrt{7} $
| w2-6w-7=0 | | 1000=70n-400 | | x+4/18=1/9+(x-3/2) | | -19p-5(4-5p)=4(p-2)-4 | | (7x+6)=(6x-7) | | x+4/18=1/9+x-3/2 | | n/5-7=-6 | | y/5-20=-5 | | 25=10+x/5 | | 34*x^2+68*x-510=0 | | c+c-2c+2c-c=20 | | 4m+10=7 | | 4x+36=-32 | | 14d-12d+-5d=9 | | -3(3y-4)-y=-3(y-5) | | -y+7=4 | | 48=y2 | | 7r-7=77 | | 3u-3u+2u=10 | | 5k+-7k+5k+-5k+3k=14 | | 26x+4=5(5x+3) | | 1/x+7x/5x-2=0 | | 3-(2x-9)=-x-10 | | 2x-6x+4=x-7+11 | | 11r+5r-11r-3r=18 | | 4(x-3)-2x=7 | | 3.5xX=Xx0.5 | | X2-y2=2019 | | 4p+18p-20p+10p+16p=16 | | 5x/10=15 | | |4x-3|=21 | | (n−)=n |