If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-35x+15=0
a = 5; b = -35; c = +15;
Δ = b2-4ac
Δ = -352-4·5·15
Δ = 925
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{925}=\sqrt{25*37}=\sqrt{25}*\sqrt{37}=5\sqrt{37}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-35)-5\sqrt{37}}{2*5}=\frac{35-5\sqrt{37}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-35)+5\sqrt{37}}{2*5}=\frac{35+5\sqrt{37}}{10} $
| 27x-3=2x+4 | | 12x-25-x-3=360 | | 3x+9x=-30 | | X2-9x=3 | | 5y+y=4 | | 6/h−1=−3 | | 304+x=323 | | 3(4d-9)=69 | | 21a+a^2=289 | | X2-16x+2=0 | | 7d/9=1/6 | | u^2-3u+112=12u+56 | | 4x^2+62x-240=0 | | X2+12x+4=0 | | 9+3x=1x+5 | | 3=a2^2 | | 4x+12=2x+6+6 | | 4-(x-1)+4=6(x-2)-4-2x | | (25)^x=1/5 | | x(4)+12=19 | | x4+12=19 | | 2,4x-19,9=21,1-1,6x | | 0.018x+0.02x+0.03375x=35875 | | 2n+1=5n-6 | | 0=-4.9x^2-19.6x+0.50 | | 21x+30=51 | | 60+20x=35x | | 0.2x+1=1.6 | | x=-9+10=11 | | 3x-1=5- | | 2×-1=3y | | 5^y=32 |