If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-36x+36=0
a = 5; b = -36; c = +36;
Δ = b2-4ac
Δ = -362-4·5·36
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-36)-24}{2*5}=\frac{12}{10} =1+1/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-36)+24}{2*5}=\frac{60}{10} =6 $
| 7(x+3)=-56 | | 39=10/7x+0 | | 5(x+8)=2x−7+8(x-1) | | y(1,000)=-2.129.75+21,028.35 | | -11-3x=75-1x | | 2-5x=2x+9=x= | | 4x-(3x+2)=x-7 | | -x+5=x-5-3x | | 4y-6+6(2y+2)=-2(y+5) | | 5x+11=-25 | | -100+x=-100 | | 3c-56+3c+8=180 | | x/3=9 | | x^2+30x-252=0 | | x-17=50 | | w/4=14 | | 8y+48=5y+33 | | 8x-200=5x-9 | | -7=9x-6-8x | | v-88=80 | | 10(x-2)=4(x+1) | | 7x-2x=15-5=x= | | 5u-35=-8(u-7) | | 5y-8=3y-10 | | -7y+5(y-3)=-1 | | -39+m=-42 | | (z+40)+z=z-31 | | 2x2-242=0 | | 4x+2=10- | | 3/(1/)=x/(2/3) | | −4y=−12 | | 6t-4=-2 |