If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-45=0
a = 5; b = 0; c = -45;
Δ = b2-4ac
Δ = 02-4·5·(-45)
Δ = 900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{900}=30$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-30}{2*5}=\frac{-30}{10} =-3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+30}{2*5}=\frac{30}{10} =3 $
| 2d-3=16 | | -4+3x=-12+3x | | 12-5x=4x+8 | | 8(2n+3)-5(2n+8)=38-4(1-5n) | | 5x+7=2/3x+20 | | k/4-3=-4 | | (5x-33)=(6x+4 | | (1/s^2+5s+4)*(1/s+2)=0 | | -4n+6=30 | | (k-4/3)=-4 | | 4(2y-1)+y=6y+3-y) | | -10m+8=-112 | | 5v-4=10-2v | | |x|=49 | | y-(-1.5=0.5 | | 12x+9=3x-18 | | 3x+4=3(x+2)-5 | | 4n+5=-5n+5 | | 12x+9=-3x-18 | | x-1/4+3/2=315 | | 1-2v=-6-v | | M^2+(m-8)^2=50 | | 1112=12p | | 7(x+2)=6x-10 | | 3a-2=2a+4 | | 4x=−7x−22 | | 3x-3°=2x+3° | | -5n=3/7 | | -2b-5=-3b+6 | | -5x+9=74 | | 2=1/5x+3 | | 1/2x+7=1/3x-7 |