If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-45x+20=0
a = 5; b = -45; c = +20;
Δ = b2-4ac
Δ = -452-4·5·20
Δ = 1625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1625}=\sqrt{25*65}=\sqrt{25}*\sqrt{65}=5\sqrt{65}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-45)-5\sqrt{65}}{2*5}=\frac{45-5\sqrt{65}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-45)+5\sqrt{65}}{2*5}=\frac{45+5\sqrt{65}}{10} $
| 6(2y-7)=3(5y+6) | | 5x2-50x+30=0 | | 6x+12=4x+15 | | 8(m-2)=4(m+9) | | x2-7x=10 | | -45x3=77+90 | | 4a+5=5a-4 | | 4d+17=8d-4 | | K=100-4n(n=60) | | 3x2-96=0 | | -x-1(X+3)=-4-10(2x-6) | | x^2+КХ+100=0 | | (x-5)(x+2)=(x-3)(x-1) | | (x-5)(x+2)=(x-3)(x-1 | | 6x-8(-2-5x)=-10 | | r/5-30=-22 | | 7(5-×)=4(x-11) | | (x-4)(2+3)=-2(-x-3) | | -4(y+2)=-8(1-y) | | 0.3x+-0.9=0 | | 2y-5=4y+15 | | 7x+3=-8-5x+2,5x | | 2x-7x-11=7x-7x+4 | | -3(1+6r)=14=r | | 2(x+5)-4x=6+20x-4x | | 78-12b=4b-20 | | 20-17x=20x-17 | | ^4√3^3x+2=51×17^3x-2 | | 9k^2+20k-22=0 | | (x-10)^2+100=150 | | 2x−8=8 | | -4+7x=8x+1 |