If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-45x=0
a = 5; b = -45; c = 0;
Δ = b2-4ac
Δ = -452-4·5·0
Δ = 2025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2025}=45$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-45)-45}{2*5}=\frac{0}{10} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-45)+45}{2*5}=\frac{90}{10} =9 $
| 4/8p=13 | | 7x/12=2x/5+11 | | 4^x-2^x-12=0 | | 3h-1=9+6h | | 9k+10=4k | | 60=x+.5x | | 9x-(5/4x+1)12=0 | | 2a-3a+5a=0 | | -q+2=11-2q | | G-11=5g | | 11y-4y+2y=54 | | 5x-20=2x+6+4x+2 | | 7+m÷8=-2 | | 13.5x17.4= | | 18=2x+10=6x-12 | | 1^5x+4=32 | | 1(k-5)=-16 | | 4.9(8r-3.4)=8 | | 13(k-5)=-16 | | 18=2x+10+6x-12 | | y/2+y/3=12 | | (2x+1)/3=(x-1)/2 | | 2x+1/3=(x-1)/2 | | 6x+76+9x-71=180 | | 9x+184+7x+156=180 | | 2x/8=1 | | 87=4w+11 | | −2x2−9=−107 | | 42+15=3n | | 42+3n=15 | | 9^x=3 | | 8(2x)*3-2x=0 |