If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-49=0
a = 5; b = 0; c = -49;
Δ = b2-4ac
Δ = 02-4·5·(-49)
Δ = 980
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{980}=\sqrt{196*5}=\sqrt{196}*\sqrt{5}=14\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14\sqrt{5}}{2*5}=\frac{0-14\sqrt{5}}{10} =-\frac{14\sqrt{5}}{10} =-\frac{7\sqrt{5}}{5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14\sqrt{5}}{2*5}=\frac{0+14\sqrt{5}}{10} =\frac{14\sqrt{5}}{10} =\frac{7\sqrt{5}}{5} $
| 34=2(7x) | | (5.6x10^5)÷=(6.4x10^2) | | 5x^2+20=145 | | 5x^+20=145 | | 36.3÷y=12.1;2,3,4 | | d/(-29)=25 | | 530=x10 | | 5x-2=7+2× | | 154×x=-22 | | p-4=6/p= | | 7/3=g+2/3 | | p-4=6/p=10 | | 3x+3.46=28 | | 7x112=8+3x1 | | 2x^2+16-912=0 | | t3=13 | | 5c-33=9-3 | | 4x+12-6x=6 | | 22c=(-264) | | g/28=27 | | 3.14*81=x | | (2x+4)/2=(2x+5)/3 | | 27s=864 | | 9=t/22 | | z/21=29 | | 7a-5=7(1-8a)+2 | | 3/2x+1/2x=24 | | 252=12d | | 26d=312 | | b−18=812 | | 0.5(2x-3)=2.7 | | 3z=744 |